21 research outputs found

    A continuum robotic platform for endoscopic non-contact laser surgery: design, control, and preclinical evaluation

    Get PDF
    The application of laser technologies in surgical interventions has been accepted in the clinical domain due to their atraumatic properties. In addition to manual application of fibre-guided lasers with tissue contact, non-contact transoral laser microsurgery (TLM) of laryngeal tumours has been prevailed in ENT surgery. However, TLM requires many years of surgical training for tumour resection in order to preserve the function of adjacent organs and thus preserve the patient’s quality of life. The positioning of the microscopic laser applicator outside the patient can also impede a direct line-of-sight to the target area due to anatomical variability and limit the working space. Further clinical challenges include positioning the laser focus on the tissue surface, imaging, planning and performing laser ablation, and motion of the target area during surgery. This dissertation aims to address the limitations of TLM through robotic approaches and intraoperative assistance. Although a trend towards minimally invasive surgery is apparent, no highly integrated platform for endoscopic delivery of focused laser radiation is available to date. Likewise, there are no known devices that incorporate scene information from endoscopic imaging into ablation planning and execution. For focusing of the laser beam close to the target tissue, this work first presents miniaturised focusing optics that can be integrated into endoscopic systems. Experimental trials characterise the optical properties and the ablation performance. A robotic platform is realised for manipulation of the focusing optics. This is based on a variable-length continuum manipulator. The latter enables movements of the endoscopic end effector in five degrees of freedom with a mechatronic actuation unit. The kinematic modelling and control of the robot are integrated into a modular framework that is evaluated experimentally. The manipulation of focused laser radiation also requires precise adjustment of the focal position on the tissue. For this purpose, visual, haptic and visual-haptic assistance functions are presented. These support the operator during teleoperation to set an optimal working distance. Advantages of visual-haptic assistance are demonstrated in a user study. The system performance and usability of the overall robotic system are assessed in an additional user study. Analogous to a clinical scenario, the subjects follow predefined target patterns with a laser spot. The mean positioning accuracy of the spot is 0.5 mm. Finally, methods of image-guided robot control are introduced to automate laser ablation. Experiments confirm a positive effect of proposed automation concepts on non-contact laser surgery.Die Anwendung von Lasertechnologien in chirurgischen Interventionen hat sich aufgrund der atraumatischen Eigenschaften in der Klinik etabliert. Neben manueller Applikation von fasergeführten Lasern mit Gewebekontakt hat sich die kontaktfreie transorale Lasermikrochirurgie (TLM) von Tumoren des Larynx in der HNO-Chirurgie durchgesetzt. Die TLM erfordert zur Tumorresektion jedoch ein langjähriges chirurgisches Training, um die Funktion der angrenzenden Organe zu sichern und damit die Lebensqualität der Patienten zu erhalten. Die Positionierung des mikroskopis chen Laserapplikators außerhalb des Patienten kann zudem die direkte Sicht auf das Zielgebiet durch anatomische Variabilität erschweren und den Arbeitsraum einschränken. Weitere klinische Herausforderungen betreffen die Positionierung des Laserfokus auf der Gewebeoberfläche, die Bildgebung, die Planung und Ausführung der Laserablation sowie intraoperative Bewegungen des Zielgebietes. Die vorliegende Dissertation zielt darauf ab, die Limitierungen der TLM durch robotische Ansätze und intraoperative Assistenz zu adressieren. Obwohl ein Trend zur minimal invasiven Chirurgie besteht, sind bislang keine hochintegrierten Plattformen für die endoskopische Applikation fokussierter Laserstrahlung verfügbar. Ebenfalls sind keine Systeme bekannt, die Szeneninformationen aus der endoskopischen Bildgebung in die Ablationsplanung und -ausführung einbeziehen. Für eine situsnahe Fokussierung des Laserstrahls wird in dieser Arbeit zunächst eine miniaturisierte Fokussieroptik zur Integration in endoskopische Systeme vorgestellt. Experimentelle Versuche charakterisieren die optischen Eigenschaften und das Ablationsverhalten. Zur Manipulation der Fokussieroptik wird eine robotische Plattform realisiert. Diese basiert auf einem längenveränderlichen Kontinuumsmanipulator. Letzterer ermöglicht in Kombination mit einer mechatronischen Aktuierungseinheit Bewegungen des Endoskopkopfes in fünf Freiheitsgraden. Die kinematische Modellierung und Regelung des Systems werden in ein modulares Framework eingebunden und evaluiert. Die Manipulation fokussierter Laserstrahlung erfordert zudem eine präzise Anpassung der Fokuslage auf das Gewebe. Dafür werden visuelle, haptische und visuell haptische Assistenzfunktionen eingeführt. Diese unterstützen den Anwender bei Teleoperation zur Einstellung eines optimalen Arbeitsabstandes. In einer Anwenderstudie werden Vorteile der visuell-haptischen Assistenz nachgewiesen. Die Systemperformanz und Gebrauchstauglichkeit des robotischen Gesamtsystems werden in einer weiteren Anwenderstudie untersucht. Analog zu einem klinischen Einsatz verfolgen die Probanden mit einem Laserspot vorgegebene Sollpfade. Die mittlere Positioniergenauigkeit des Spots beträgt dabei 0,5 mm. Zur Automatisierung der Ablation werden abschließend Methoden der bildgestützten Regelung vorgestellt. Experimente bestätigen einen positiven Effekt der Automationskonzepte für die kontaktfreie Laserchirurgie

    Stereo vision-based tracking of soft tissue motion with application to online ablation control in laser microsurgery

    Get PDF
    Recent research has revealed that image-based methods can enhance accuracy and safety in laser microsurgery. In this study, non-rigid tracking using surgical stereo imaging and its application to laser ablation is discussed. A recently developed motion estimation framework based on piecewise affine deformation modeling is extended by a mesh refinement step and considering texture information. This compensates for tracking inaccuracies potentially caused by inconsistent feature matches or drift. To facilitate online application of the method, computational load is reduced by concurrent processing and affine-invariant fusion of tracking and refinement results. The residual latency-dependent tracking error is further minimized by Kalman filter-based upsampling, considering a motion model in disparity space. Accuracy is assessed in laparoscopic, beating heart, and laryngeal sequences with challenging conditions, such as partial occlusions and significant deformation. Performance is compared with that of state-of-the-art methods. In addition, the online capability of the method is evaluated by tracking two motion patterns performed by a high-precision parallel-kinematic platform. Related experiments are discussed for tissue substitute and porcine soft tissue in order to compare performances in an ideal scenario and in a setup mimicking clinical conditions. Regarding the soft tissue trial, the tracking error can be significantly reduced from 0.72 mm to below 0.05 mm with mesh refinement. To demonstrate online laser path adaptation during ablation, the non-rigid tracking framework is integrated into a setup consisting of a surgical Er:YAG laser, a three-axis scanning unit, and a low-noise stereo camera. Regardless of the error source, such as laser-to-camera registration, camera calibration, image-based tracking, and scanning latency, the ablation root mean square error is kept below 0.21 mm when the sample moves according to the aforementioned patterns. Final experiments regarding motion-compensated laser ablation of structurally deforming tissue highlight the potential of the method for vision-guided laser surgery.EU/FP/-ICT/28866

    Methods for intraoperative, sterile pose-setting of patient-specific microstereotactic frames

    Get PDF
    This work proposes new methods for a microstereotactic frame based on bone cement fixation. Microstereotactic frames are under investigation for minimal invasive temporal bone surgery, e.g. cochlear implantation, or for deep brain stimulation, where products are already on the market. The correct pose of the microstereotactic frame is either adjusted outside or inside the operating room and the frame is used for e.g. drill or electrode guidance. We present a patientspecific, disposable frame that allows intraoperative, sterile pose-setting. Key idea of our approach is bone cement between two plates that cures while the plates are positioned with a mechatronics system in the desired pose. This paper includes new designs of microstereotactic frames, a system for alignment and first measurements to analyze accuracy and applicable load. © 2015 SPIE

    Endoluminal non-contact soft tissue ablation using fiber-based Er:YAG laser delivery

    Get PDF
    The introduction of Er:YAG lasers for soft and hard tissue ablation has proven promising results over the last decades due to strong absorption at 2.94 μm wavelength by water molecules. An extension to endoluminal applications demands laser delivery without mirror arms due to dimensional constraints. Therefore, fiber-based solutions are advanced to provide exible access while keeping space requirements to a minimum. Conventional fiber-based treatments aim at laser-tissue interactions in contact mode. However, this procedure is associated with disadvantages such as advancing decrease in power delivery due to particle coverage of the fiber tip, tissue carbonization, and obstructed observation of the ablation progress. The objective of this work is to overcome aforementioned limitations with a customized fiber-based module for non-contact robot-assisted endoluminal surgery and its associated experimental evaluation. Up to the authors knowledge, this approach has not been presented in the context of laser surgery at 2.94 μm wavelength. The preliminary system design is composed of a 3D Er:YAG laser processing unit enabling automatic laser to fiber coupling, a GeO2 solid core fiber, and a customized module combining collimation and focusing unit (focal length of 20 mm, outer diameter of 8 mm). The performance is evaluated with studies on tissue substitutes (agar-agar) as well as porcine samples that are analysed by optical coherence tomography measurements. Cuts (depths up to 3mm) with minimal carbonization have been achieved under adequate moistening and sample movement (1.5mms-1). Furthermore, an early cadaver study is presented. Future work aims at module miniaturization and integration into an endoluminal robot for scanning and focus adaptation. © 2016 SPIE

    Methods for a fusion of Optical Coherence Tomography and stereo camera image data

    Get PDF
    This work investigates combination of Optical Coherence Tomography and two cameras, observing a microscopic scene. Stereo vision provides realistic images, but is limited in terms of penetration depth. Optical Coherence Tomography (OCT) enables access to subcutaneous structures, but 3D-OCT volume data do not give the surgeon a familiar view. The extension of the stereo camera setup with OCT imaging combines the benefits of both modalities. In order to provide the surgeon with a convenient integration of OCT into the vision interface, we present an automated image processing analysis of OCT and stereo camera data as well as combined imaging as augmented reality visualization. Therefore, we care about OCT image noise, perform segmentation as well as develop proper registration objects and methods. The registration between stereo camera and OCT results in a Root Mean Square error of 284 μm as average of five measurements. The presented methods are fundamental for fusion of both imaging modalities. Augmented reality is shown as application of the results. Further developments lead to fused visualization of subcutaneous structures, as information of OCT images, into stereo vision. © 2015 SPIE

    Editorial: Translational research in medical robotics—challenges and opportunities

    Get PDF
    In the last few decades, emerging medical technologies and the growing number of commercial robotic platforms have supported diagnosis and treatment of both acute and chronic diseases of the human body, improving the clinical outcome, reducing trauma, shortening the patient recovery time, and increasing postoperative survival rates (Troccaz et al., 2019). Medical robots–including surgical robots, rehabilitation and assistive robots, and hospital automation robots–with improved safety, efficacy and reduced costs, robotic platforms will soon approach a tipping point, moving beyond early adopters to become part of the mainstream clinical practice, defining the future of smart hospitals and home-based patient care. Surgical robots promise to enhance minimally invasive surgery with precise instrument control, intuitive hand-eye coordination, and superior dexterity within tight spaces (Dupont et al., 2021). Rehabilitation robotics facilitates robot-assisted therapy and automated recovery training (Xue et al., 2021). Assistive robots aid individuals with physical limitations, either enhancing or compensating for functions, promoting independence, and lessening the burden on caregivers (Trainum et al., 2023). Additionally, robotic systems can automate hospital operations, spanning service robots aiding clinicians to robots in labs for high-throughput testing (Kwon et al., 2022). These technologies aim to revolutionize healthcare, offering improved patient care and operational efficiency

    Online measurement and evaluation of the Er:YAG laser ablation process using an integrated OCT system

    Get PDF
    Laser surgery has gained clinical importance due to numerous advantages including contact-free processing, arbitrary cutting geometries, and high precision. However, online process control remains a challenge for widespread clinical use. Therefore, we established a combined setup of a pulsed Er:YAG laser ( = 2940 nm) and an optical coherence tomogra-phy (OCT) ( = 930 nm) for in situ monitoring of hard tissue ablation. The optical setup facilitates an interactive control of the laser ablation depth and remaining tissue strength through the depth resolution of OCT. The 3D OCT data-set, which is acquired after ablation, provides contours and layer thicknesses

    Stereo Laryngoscopic Impact Site Prediction for Droplet-Based Stimulation of the Laryngeal Adductor Reflex

    Get PDF
    The laryngeal adductor reflex (LAR) is a vital reflex of the human larynx. LAR malfunctions may cause life-threatening aspiration events. An objective, noninvasive, and reproducible method for LAR assessment is still lacking. Stimulation of the larynx by droplet impact, termed Microdroplet Impulse Testing of the LAR (MIT-LAR), may remedy this situation. However, droplet instability and imprecise stimulus application thus far prevented MIT-LAR from gaining clinical relevance. We present a system comprising two alternative, custom-built stereo laryngoscopes, each offering a distinct set of properties, a droplet applicator module, and image/point cloud processing algorithms to enable a targeted, droplet-based LAR stimulation. Droplet impact site prediction (ISP) is achieved by droplet trajectory identification and spatial target reconstruction. The reconstruction and ISP accuracies were experimentally evaluated. Global spatial reconstruction errors at the glottal area of (0.3±0.3) mm and (0.4±0.3) mm and global ISP errors of (0.9±0.6) mm and (1.3±0.8) mm were found for a rod lens-based and an alternative, fiberoptic laryngoscope, respectively. In the case of the rod lens-based system, 96% of all observed ISP error values are inferior to 2 mm; a value of 80% was found with the fiberoptic assembly. This contribution represents an important step towards introducing a reproducible and objective LAR screening method into the clinical routine

    End-to-End Real-time Catheter Segmentation with Optical Flow-Guided Warping during Endovascular Intervention

    Get PDF
    Accurate real-time catheter segmentation is an important pre-requisite for robot-assisted endovascular intervention. Most of the existing learning-based methods for catheter segmentation and tracking are only trained on small-scale datasets or synthetic data due to the difficulties of ground-truth annotation. Furthermore, the temporal continuity in intraoperative imaging sequences is not fully utilised. In this paper, we present FW-Net, an end-to-end and real-time deep learning framework for endovascular intervention. The proposed FW-Net has three modules: a segmentation network with encoder-decoder architecture, a flow network to extract optical flow information, and a novel flow-guided warping function to learn the frame-to-frame temporal continuity. We show that by effectively learning temporal continuity, the network can successfully segment and track the catheters in real-time sequences using only raw ground-truth for training. Detailed validation results confirm that our FW-Net outperforms state-of-the-art techniques while achieving real-time performance.Comment: ICRA 202

    OEVRK Fluoroscopy Data

    No full text
    This collection in the domain of endovascular surgery contains fluoroscopy sequences that show 4 different cannulation tasks (liac, superior mesenteric,right common carotid and renal arteries) on two phantom models.</p
    corecore